在评测开始时,笔者驾驶的凯迪拉克PHEV电量接近满电,因此以锁定模式(笔者理解这个锁定模式为在电池电量足够,以消耗电池电量为主,汽油机为辅)开始测试。
与搭载汽油机的CT6相同的转向回馈力,在油门踏板轻缓的深入(一旦油门踏板大幅度变化,整车自动进入油电混合驱动状态)电动机输出扭矩有弱向强输出。电动机的特性在此时凸显,驱动自重2吨的车身轻而易举。
锁定模式:
或许是设计方对油电混动汽车使用情景、用车理念驱使,凯迪拉克PHEV并没有设定强制电动、汽油行驶的开关,而决定是否纯电动行驶,完全依赖电池电量以及驾驶员操控态度。在测试测试中,笔者并不能确定,纯电行驶是否与车速有关。
如上图所示,在车速接近80公里/小时,只要温柔的“控制”油门踏板,凯迪拉克PHEV仍然处于电驱动行驶状态。
泪滴式日间行车灯让凯迪拉克PHEV看起来更科技。电驱动行驶中,笔者几乎感受不到来自动力舱内的杂音,因为电动机布置在“变速器”内,在缓慢加速时受外界噪音影响,或可听到低频噪音。
通过中央显示屏,可以实时监测到车辆行驶状态。在笔者将能量回收调节至4级(最弱),基本上只要“怠速”状态滑行,车辆靠自重和惯性前行。轻微的电量回收并不会对滑行给予额外阻力。挡能量回收状态调节从4级、3级、2级、至1级,滑行距离相应缩短,甚至在1级时只要抬起油门踏板就会感觉到“制动力”作用在驱动桥上。换句话说,当凯迪拉克PHEV的能量回收处于1级时,可以有条件的替代制动系统降低车速。
在测试过程中,偶尔因为油门踏板被深踩,汽油机立刻被“唤醒”开始发力。笔者注意到,在车速30、50、70公里/小时区间,汽油机介入时,并没有出现非线性扭矩变化。
或许这一结果可以被看做,“智能EVT驱动模块”为了迎合车主不同驾驶习惯,而提供100多种控制策略的体现。在不同车速、不同驱动模式下,为驾驶员营造出“驾驶传统汽车一样的感受”,让你不能感受到驾驶混动汽车有什么不同。
上图为凯迪拉克PHEV汽油机与电动机共同驱动时,能量流状态特写。
对于凯迪拉克PHEV使用的混动平台,可以被简单的看做汽油机+混动变速器+后轮驱动单元+电池组件式结构。对发动机硬件改动少,混动变速器全新研发,可以匹配至不同级别平台(四轮驱动、后轮驱动)。在研发周期尽可能短的前提下,靠前期技术积累,引入包含电动机在内的“智能EVT驱动模块”,形成具备相当扩展能力的混动解决方案。
如果有必要可以在“智能EVT驱动模块”进行性能提升,以便获得更出色的驱动策略。事实上,通用的这套“智能EVT驱动模块”性能已经相当出色了。虽然其上市晚于丰田混动技术,但也因此获得性能上的超越。
运动模式:
在温柔的以纯电模式行驶30多公里后,笔者将车辆调节至运动模式(白色箭头)能量回收系统从4级调节至3级。再急加速时,汽油机与电动机同时动作,澎湃的扭矩连绵不断的输出至后驱动桥。完全没有直列四缸小排量增压发动机那种快速达到扭矩最高值后,加速无力的感觉。反而更像驾驶一台搭载V8大排量自然吸气发动机的性能跑车,自动变速器主动迎合持续攀升的扭矩(输出)。
通过电动机和“智能EVT驱动模块”,让驾驶员产生一种驾控错觉。用小排量增压发动机和混动技术,换取不基于大排量消费税和“一脚油10块钱”的“爽”。
从运动模式切换至舒适模式,在尝试以地板油加速,就明显感觉到,油门踏板深踩的幅度远没有加速增幅那样同步。为了达到节省燃料与电量目的,系统限制可动力的输出。即便如此,加速被弱化,却没有降低动力输出的平顺性。
在限速70公里的过道上,只能偶尔尝试一下运动模式带来的加速感,毕竟公路不是赛道。
与CT6一样,凯迪拉克PHEV也配置了车道偏离、主动安全(制动)、侧向来车提示等安全配置。后方车辆接近并超越时,会在相应一侧外反光镜片警告提示(黄色箭头)。
在标准的测试场地内,笔者着重对手动换挡模式、极速以及悬架对不同路况的过滤状态进行重点测试。
笔者驾驶凯迪拉克PHEV,以70公里/小时(弯道)-120公里/小时(直线)车速测试。
运动模式,手动换挡,发动机转速超过5000转/分升档,此时动力电池续航里程处于50%,在后驱动桥稍微打滑后(电子稳定系统即刻介入)有效扭矩被转化成牵引力,原本正常姿态的笔者,随即紧贴在驾驶座椅靠背。升入2挡之后车速即可“破百”。在安全引导车授意下,笔者尝试持续加速,至146公里/小时停止升档。此时,笔者完全没有感受到电动机介入所导致扭矩传输不均衡的突兀感。实际上,凯迪拉克PHEV搭载的2.0T SIDI发动机的涡轮增压器在1750转/分开始运行,或多或少还是可以感受扭矩变化的节点。
上汽荣威e系列油电混动车,利用启动电机补偿全油门起步之后、涡轮增压器介入之前扭矩输出的不足。比亚迪王超犀利油电混动车,一味增加扭矩的输出而忽略平顺性和乘坐舒适性。凯迪拉克PHEV因为驱动模式的优化,将荣威系混动车突出的舒适性和比亚迪系混动车动力输出明显的优势相结合,并通过“智能EVT驱动模块”解决了车辆在不同车速区间扭矩分配均衡且持续(最大输出)性不足的问题。
在超过3种路况下(减速带、碎石、柏油路等),凯迪拉克PHEV悬架调校几乎完全过滤掉了来自路面的噪音和颠簸。随着车速接近120公里/小时,部分路噪甚至被忽略。
其实,凯迪拉克PHEV的具备相当的操控优势并不意外,甚至是应该的。毕竟这个品牌所具备的产品硬实力,要对的其售价和品牌软实力。作为上海通用在中国大陆市场推出的第一款插电式油电混动汽车,其电池和电控(BMS)以及“智能EVT驱动模块”最具技术含量。
凯迪拉克PHEV搭载的电池组件内继承了液冷电池热管理系统,并非单纯的降低全负荷能量输出时电池温度。在冬季为电池芯体提供适当的保温(达到电量输出的正常温度标准),在夏季平衡电池组件内部各电芯的温度,综合电池芯体的综合性能。
凯迪拉克PHEV的液态电池热管理系统,为目前为止中国市场销售的新能源汽车最先进的分系统。
在笔者之前多篇稿件中已经提及,凯迪拉克PHEV电池组件设定在后备箱内(靠近后排座椅靠背)。混动版CT6搭载的电池组件采用三元锂材质,192个电池芯体采用独立封装,并匹配更先进的液态冷却的热管理系统,其容量为18.4千瓦时(度电)。而凯迪拉克PHEV搭载的这套电池组件具备液态冷却系统和BMS系统的“原型”,被应用在美军油电混合驱动ULV(高机动轻型装甲车),在中东等热点战场区域接受了2年实战测试(至今)。
笔者有话说:
笔者驾驶凯迪拉克PHEV在社会道路测试,以“零里程”空调状态共行驶115公里,前60公里偏向纯电行驶,间歇以油电混动模式行驶(不超过0.8公里),最终剩余电量还可行驶8公里。在运动、舒适、锁定模式下,凯迪拉克PHEV的动力衔接的平顺性,无疑是其他品牌同型车所不具备的。
?? 后来居上的凯迪拉克PHEV为了提升不同车速区间的舒适性,在起步时(混动模式)电动机给予汽油机更细腻的扭矩补偿,使得整车更像一台电动汽车。即便在急加速后,“缓了一觉油门”后,“智能EVT驱动模块”升挡时,电动机还会给出一个适时扭矩补偿,“平衡”车辆加速、升挡的顿挫感。
在高速行驶中,系统会自动判定,以汽油机驱动为主导,根据电池电量设定为电池充电状态和电动机介入运行的频率。此时更像一台凯迪拉克PHEV的传统动力汽车。
在市区拥堵状态行驶,系统判定以电驱动形式为主,即便电池电量不足,也会在系统负载较低状态,行车时为电池充电。此时可以将凯迪拉克PHEV视为一台增程式电动汽车。
笔者驾驶凯迪拉克PHEV,如果不是有意测试纯电动续航里程,将体会不到这款油电混合驱动大型豪华轿车与原型车的区别。实际上,凯迪拉克PHEV的动力输出感受,与CT6 顶配车型极为相似。
至于,通用没有给凯迪拉克PHEV设定电动和油电混动强制驱动按钮,恐怕还是与对混动汽车研发和使用的态度有关。似乎通用更愿意让驾驶员感受不到混动系统的存在,努力通过技术和调校让凯迪拉克PHEV更像一款搭载传统动力的大型豪华轿车。而混合动力存在的唯一原因,就是为整车提供“额外”动力而已。
当然,不能说凯迪拉克PHEV完美无缺。在中国新能源市场量产的油电混合动力车,多以售价15-22万元(扣除补贴)车型为主。即便丰田、本田弱混车型的出现,其售价也徘徊在此范围呢。如果凯迪拉克PHEV以40万+售价出现,恐怕将会让众多消费者不解。为什么通用要用如此高端混动汽车加入市场大乱斗?
在笔者看来,凯迪拉克系列车型从来不为“量”而来,而是比拼的高端市场的“质”。如果要在中端市场比拼,都是以通用品牌多款车型进行。凯迪拉克PHEV的电动续航里程80公里,拥有多种充电、行车模式,使其具备在消耗掉所有电量后的第二个100公里、第三个100公里、甚至第四个100公里后,仍然可以通过技术让动力电池在动力负载允许工况下进行反向充电,使得总体油耗处于5升/百公里。一旦国家对混动车油耗算法改变(现有算法,基于满电时行驶第一个100公里后油耗),凯迪拉克PHEV的优势更加突出。
??似乎通用将凯迪拉克PHEV引入中国市场,并非要与在售的同型车进行正面竞争,而是要通过优越的混动技术在高端市场与搭载传统动力豪华轿车进行比拼。其实,这种不将具备补贴资格的混动汽车,走位传统动力汽车推广和使用的理念,才是值得推荐。在目前中国新能源市场发展进入成熟时期,这种理念也将成最最终发展方向。
??
相关文章
[错误报告][推荐][收藏] [打印] [关闭] [返回顶部]