节能新能源汽车

电动乘用车集中式和分布式电池管理系统分析

2015-08-24 10:17:28 零排放汽车网-专注新能源汽车,混合动力汽车,电动汽车,节能汽车等新闻资讯 网友评论 0

电池管理系统有三种不同的构型,我们可以称为集中式管理系统、半分布式管理系统和分布式管理系统。

第三部分 分布式I3管理系统案例分析

典型的分布式架构,我们可以拿宝马的系统来看,这套系统从BMW与A123合作Active Hybrid(3,5,7)系列车型就开始用了,后续在I3和I8的电池系统的电子系统中沿用。如图是在2015年上海车展的均胜电子的展台上拍到的CSC和BMU的实物照片,CSC的芯片一面被遮住了。

CSC 功能:模组侧边安装,实现了单体电压采集、电压备份的功能和温度采集。主要的芯片为LT6801和6802G-2,通过Freescale的单片机通过总线传送出去了。

BMU 功能:这是非对称结构的MCU布置,在BMU里面实现了绝缘测量、HVIL的功能。

S-Box 功能:这里是实现了继电器、预充电阻、电流测量等一体化的设计。

电动乘用车集中式和分布式电池管理系统分析

图8 分布式架构

由于CSC有足够的空间来安置采集芯片、备份芯片、均衡电阻,所以即使系统在三防漆处理之后还可以实现56欧的均衡,散热这块的设计相对简单一些。

CSC的功能安全设计也做了精心的考虑,采用CAN信号的光耦耦合输出;同时内部采用运放比较器比较MCU处理过充信号和备份芯片的方式来独立发送过充等功能安全信号。侧边安装的方式,使得各种长方和正方的模块设计显得游刃有余,相比较而言,iMIEV和A3 PHEV的模组上方的设计对模组设计还是有一些限制的,如图11所示。

电动乘用车集中式和分布式电池管理系统分析

图9 2015年上海车展均胜电子展台上的CSC模块

电动乘用车集中式和分布式电池管理系统分析

图10 车展上的BMU模块照片

电动乘用车集中式和分布式电池管理系统分析

图11 模组上方的CSC嵌入安装方式

总的来看,电池系统模组化的趋势比较明显,分布式的CSC模块直接安装在模组上方,将电池采样线设计进一步简化。

第四部分 产品设计中的考虑

1)BMS的寿命设计对应的工作时间分析

传统的汽车,其实本质上HEV的运行机理和传统汽车一样,我们可以将时间划分为:a)上车之前的时间:从芯片厂家出来运输到PCBA的组装厂,成为部件产品,然后运送至整车企业组装厂待上车b)运行时间,也就是开车的时间和c)非运行时间。

我们就按照SAEJ1211里面的两个例子Door Module 8000小时工作时间 79600非工作时间(Sleep模式)和变速箱控制器 (6000小时/125400小时=131400小时)。对于BMS来说,HEV的情况下,也是一样的,工作时间最高不超过8000小时就够了。充电的车辆呢,问题来了,在引擎关闭的状态下,还有个充电状态。现在我们把估计重新调整一下,如果按照国外的寿命设计要求,15年的车辆预期寿命,可以初步估计为8000 小时 1.46小时每天的开车时间和10950~32850小时 2~6小时每天的充电时间。充电的时候,BMS部件都得工作啊,这个问题就变成了,不仅仅是开的里程多用的时间长的人对整个BMS系统的寿命形成重度的影响,充电慢的一样。

那我们换一个角度来看,如果是在中国,一个客户预期的寿命是8年,按照50KM的角度,一般需要配置12度电左右,我们再估算一下使用时间的分配。模式2 220V AC &8 A 输入1.7KW 电池系统1.5KW 充电时间为8小时,模式3 220V AC&16 A

输入3.3KW 电池系统3.0KW 充电时间为4小时=>5840 小时 2小时每天的开车时间+116800~23360小时 4~8小时每天的充电时间。

2)环境负荷分析

电池管理系统,由于有高压部分和低压部分,基本上原有电控单元需要做的12V的电气试验和电气要求都要有,又由于整个电池系统往底盘和车架上装的趋势很明显,机械应力设计要求也不低。环境这块,同样是安装条件的事情,如果电池包设计的好一些,可能压力小一些。

a)环境设计要求

要有防水功能,这不仅包含电池包IP等级由于密封胶老化,也是考虑内部有凝露或者是内部冷却液泄漏造成,电池系统进液体故障。考虑到中国的城市下水道问题,这个事情要比国外大城市使用更苛刻。

要有防盐雾和湿热功能,电池系统由于带盐分的空气湿热交变的凝露,产生腐蚀或者绝缘下降等故障。

b)电特性要求:

所有的隔离电路部分的抗电强度大于2000V,绝缘电阻大于10MΩ, 爬电距离满足IEC要求。

EMC见下表

满足电故障要求,电源反接、防电源短路、防对地短路、防过压和防引脚短路。

电动乘用车集中式和分布式电池管理系统分析

图12 普通电控单元负荷要求标准对应表

3)软件系统设计

我对整个软件系统的设计生疏一些。总的来看,BMS的核心价值不仅仅在相关算法上,离线的电池模型建立和电池寿命预测,也会对BMS内部的软件系统产生很深刻的影响。这块限于篇幅,这里不展开了,以后有机会再一一介绍。

全文小结

1)本文还是对乘用车用BMS做一些阐述,实际产品设计中整个设计是更严谨和细致的,这里更多的还是提一些概要。

2)电池管理系统的技术还是和电池模组设计和电池包的设计是强相关,目前处于演变快速阶段,这些老的设计概念,也只能作为一个参考。

参考文件:

1)Key Factors of the Power Battery Development in 2013:E-Motorcycle & EV Mark Lu Industrial Economics & Knowledge Center (IEK) Industrial Technology Research Institute (ITRI) 2013/04/12

2)THE HIGH VOLTAGE BATTERIES OF THE BMW i3 AND BMW i8

3)Ogawa, K., Todoroki, N.,Taguchi, H., Mogari, T., et al.,“Development of a High Capacity Lithium-ion Battery for Nissan Leaf,” Nissan Technical review No.69-70, 2012.

4)Renesas Who's in Charge-Solutions for HEV/EV Battery Cell Management

心情指数模块
digg
关键词:电池管理系统
作者:朱玉龙 来源:第一电动网

[错误报告][推荐][收藏] [打印] [关闭] [返回顶部]

  • 验证码:

最新图片文章

最新文章

网站导航